

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-II

TIME PART		OWED: THREE HOURS CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS = 20 MAXIMUM MARKS = 80					
NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.									
	(iii)								
		places.							
	(iv)								
	(v)	No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.							
	(vi)	Extra attempt of any question or any part of the question will not be considered.							
	(vii)	Use of Calculator is allowed.							
<u>PART – II</u>									
Q. 2.	(a)	a , and outer radius b , and has a line of charge density λ is pl	consider an infinitely long cylindrical insulating shell of inner radius p , and outer radius p , and has a uniform volume charge density p . If a ne of charge density p is placed along the axis of the shell then etermine the electric field intensity at a point p such that (i) $p < p$ and (ii) $p > p$.						
	(b)	Determine the energy density for	a capacitor.		(6)				
	(c)	Discuss the Lorentz force.			(6) (20)				
Q. 3.	(a)	Find the magnetic energy density	for the magnetic field	of the inductor.	(10)				
	(b)	Sate and explain the Lenz's law.			(6)				
	(c)	Why is the work done by a mag zero?	gnetic field on a char	ged particle always	(4) (20)				
Q. 4.	(a)	Describe the properties of each their dual nature.	of, an electron and t	he light, that show	(8) (6)				
	(b)	State and explain the de Broglie h	ypothesis?						
	(c)	Metals A, B and C have work fun			(6) (20)				
		light of wavelength 320nm is inci		1					
		(i) Which metals exhibit photo(ii) Maximum kinetic energy of		n case?					
		(ii) Widainidii Kinetie Chergy C	or photoerection in each	ii case:					

Q. 5. (a) Determine the transmission co-efficient for a particle having energy E (14) incident on a rectangular barrier, so that $E < V_0$, the barrier is given by

$$V(x) = \begin{cases} +V_0 & for -a < x < a \\ 0 & for |x| > a \end{cases}$$

- (b) For an operator \hat{A} , we know $[\hat{H}, \hat{A}] = 0$, where \hat{H} is the Hamiltonian operator, what can we conclude about the eigen states of \hat{A} and the $\langle \hat{A} \rangle$?
- (c) Give two examples for the operator \hat{A} , given in part (b) above. (2) (20)

PHYSICS, PAPER-II

Q. 8.

- Q. 6. (a) Describe the electrical conduction in different types of solids in terms of (8) band theory. Explain the crystal structure of diamond. **(b)** (6) Find the carrier concentration of electrons in Silicon at a temperature (c) **(6) (20)** of 25°C. Q. 7. What factors contribute to the stability of a nucleus? Draw and explain the (10)(a) plot of neutron number N versus atomic number Z for stable nuclei. Explain the use of chain reaction in relation to a nuclear reactor. **(b)** (6) The stable isotope of potassium is ¹⁹K, what kind of radioactivity do you (c) **(4) (20)** expect from ¹⁸K? Give reasons.
 - (a) Poynting Vector

Write notes on any **TWO** of the following:

- **(b)** Fusion in stars
- (c) MOSFET

(10 marks each)

(20)

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

		<u>PHYSICS</u>	<u>, PAPER-I</u>			
TIME PART				AXIMUM MARI AXIMUM MARI		
NOTE	E: (i) (ii) (iii)	Part-II is to be attempted on the separate Attempt ONLY FOUR questions from P All the parts (if any) of each Question places.	ART-II. ALL questions ca	•		ent
	(iv) (v)	Write Q. No. in the Answer Book in according No Page/Space be left blank between the crossed.	-	•	ook m	ust
	(vi) (vii)	Extra attempt of any question or any part Use of Calculator is allowed.	of the question will not be	considered.		
		PAR'	<u>r – II</u>			
Q. 2.	(a)	Describe Einstein postulates of sp difference between the special and the			(10)	
	(b)	Establish the energy-mass relationship	and give its significance.		(10)	(20
Q. 3.	(a)	Differentiate between Fermi-Dirac, B application of each.	ose-Einstein and Maxwell S	tatistics. Give	(10)	
	(b)	Draw a labelled diagram of a nuclear	reactor and give significance	of each part.	(10)	(20
Q. 4.	(a)	Distinguish between the linear and second law in terms of the linear and	,	press Newton's	(10)	
	(b)	Discuss the acceptor and rejecter elect	tronic circuits.		(10)	(20
Q. 5.	(a)	Describe and explain the Miller indi (111).	ces. Recognize the symbols	<111>, [010],	(10)	
	(b)	Discuss the closest packed crystal stru	ictures.		(10)	(20
Q. 6.	(a)	Can you imagine a three dimensional	diffraction grating? Describ	e in detail.	(10)	
	(b)	Justify the dual nature of light with ele	aborative examples.		(10)	(20
Q. 7.	(a)	State and explain the three laws of Th	ermodynamics.		(10)	
	(b)	What is a heat engine? Determine the of heat and delivers 2000 J of work pe	•	takes 10,000 J	(10)	(20

Q. 8. Write notes on any **TWO** of the following:

- (10 each) (20)
- (a) Mickelson-Morley experiment and its latest usage in a recent Nobel award.
- (b) Unification of forces and Abdus Salam contribution.
- (c) An essay on Large Hadron Partical Accelerator.
