

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

PHYSICS, PAPER-I										
TIME ALLOWED: THREE HOURSPART-I (MCQS)MAXIMUM MAPART-I(MCQS):MAXIMUM 30 MINUTESPART-IIMAXIMUM MA										
NOTE	(ii) (iii) (iv)	Part-II is to be attempted on the separ Attempt ONLY FOUR questions from All the parts (if any) of each Question places. Write Q. No. in the Answer Book in ac No Page/Space be left blank between be crossed. Extra attempt of any question or any p Use of Calculator is allowed.	n PART-II . ALL ques n must be attempted a ccordance with Q. No. the answers. All the b	t one place instead of in the Q.Paper. lank pages of Answer	at dif					
		<u>PA</u>	<u>RT – II</u>							
Q. 2.	(a)	What is Gradient of a scalar function that $\overrightarrow{Grad}\varphi = \overrightarrow{\nabla}.\varphi$	n? Give its physical si	gnificance and show	(10)					
	(b)	Define the term 'acceleration' and fin	d its Cartesian compor	ents.	(06)					
	(c)	If $\vec{A} = xz^3\hat{\imath} - 2x^2z\hat{\jmath} + 2yz^4\hat{k}$, then f	ind curl of A at the poi	nt (1,-1,1)	(04)	(20)				
Q. 3.	(a)	Explain the rotational kinetic energy and sphere.	and determine its forr	nula for a disc, hoop	(10)					
	(b)	What do you mean by the term 'inertian rotational inertia of a solid cylinder symmetry.			(06)					
	(c)	Calculate the angular speed of the sec of a watch.	cond's hand, minutes h	and and hour's hand	(04)	(20)				
Q. 4.	(a)	What was Physics like before relative theory? Mathematically explain how	•	-	(10)					
	(b)	Discuss in detail the relativity of relativity.	length using Einstein	's special theory of	(06)					
	(c)	Calculate the mass equivalent of ener hours.	gy from an antenna ra	diating 10KW for 24	(04)	(20)				
Q. 5.	(a)	Define capillarity and derive an exp tube to show that the height of proportional to the radius of the tube	the liquid column su		(10)					
	(b)				(06)					
	(c)	A cylindrical swimming pool has completely with salt water. Given, density of salt water = 1.03x	-		(04)	(20)				

Given, density of salt water = 1.03×10^3 kgm⁻³, volume of water = 16.34m³, and the atmospheric pressure = 1.013×10^5 Pa. Calculate the pressure at the bottom of the pool.

PHYSICS, PAPER-I

- **Q. 6.** (a) For a wave travelling through a medium, demonstrate that the total energy per (10) unit volume is always equal to one half the kinetic and one half the potential energy.
 - (b) The longitudinal waves can pass through solids. How it is possible and on what (06) parameters the velocity of such waves will depend?
 - (c) The angular Vibrational frequency of *CO* molecule is $0.6 \times 10^{15} \text{s}^{-1}$. Calculate the (04) (20) amount of work required for stretching it by 0.5Å from the equilibrium position.
- Q. 7. (a) An ideal gas is enclosed in a cylinder with movable piston. Calculate the work (10) done on such gas and show that pressure force is non-conservative. (06)
 - (b) State and briefly explain the intermolecular forces.
 - (c) Oxygen gas having a volume of 1130cm³ at 42°C and a pressure of 101kPa (04) (20) expanded until its volume is 1530cm³ and its pressure is 106kPa. Find the number of moles of oxygen in the system and its final temperature.
- **Q. 8.** Write short notes on any TWO of the following.
 - **a.** Kepler's Law of Periods
 - b. Michelson interferometer
 - c. Young's double slit experiment

Page 2 of 2

(20)

(10 each)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PHYSICS, PAPER-II

- Speer Gran										
TIME ALLOWED: THREE HOURSPART-I (MCQS)MAXIMUM MARKSPART-I(MCQS):MAXIMUM 30 MINUTESPART-IIMAXIMUM MARKS										
NOTE: (i) Part-II is to be attempted on the separate Answer Book.										
	(ii)									
	(iii)	(iii) All the parts (if any) of each Question must be attempted at one place instead of at different								
	(iv)	places.(iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.								
	(\mathbf{v})	No Page/Space be left blank between the answers. All the blank page	-	Book						
	(•)	must be crossed.								
	(vi)									
	(vii)									
PART – II										
Q. 2.	A pa	article of mass m is in the state $r(mx^2)$								
$\psi(x,t) = A e^{-a[\left(\frac{mx^2}{h}\right)+it]}$ Where A and a are positive constants.										
	(a)	Find A.	(5)							
	(b)	For what potential energy function V(x) does $\psi(x, t)$ satisfy the Schrodinge equation?	r (5)							
	(c)	Calculate the expectation values of x, x^2 , p, and p^2	(5)							
	(d)	Find σ_x and σ_y . Is their product consistent with the uncertainty principle?	(5)	(20)						
Q. 3.	(a)	Consider a pair of copper wires 1 mm in diameter and 5 cm apart. In copper number of conduction electrons per cubic meter is 8.45×10^{28} . Suppose their drift velocity v is 0.3 cm / s, calculate current in each wire.								
	(b)	If the wires are 20 cm apart, calculate the magnetic force on the wires.	(8)							
	(c)	Define electric current in a wire with respect to number of charges and their velocity.	. ,	(20)						
Q. 4.		Give expressions for the following quantities in terms of e , h , c , k , m_e and m_e	n.							
C	(a)	The energy needed to ionize a hydrogen atom.	(5)							
	(b)	The difference in frequency of the Lyman alpha line in hydrogen and deuter atoms.	rium (5)							
	(c)	The magnetic moment of the electron.	(5)							
	(d)	The spread in measurement of the π^0 mass, given that the π^0 lifetime is τ .	(5)	(20)						
Q. 5.	(a)	An atom is capable of existing in two states: a ground state of mass M and a excited state of mass $M + \Delta$. If the transition from ground to excited state								
		proceeds by the absorption of a photon, what must be the photon frequency	in the							
	(b)	laboratory where the atom is initially at rest? Derive the energy levels of the hydrogen atom, from Coulomb's law and the simple quantization of angular momentum.	e (7)							
	(c)	In radio astronomy, hydrogen atoms are observed in which, for example, radio	diative (6)	(20)						
		transitions from $n = 109$ to $n = 108$ occur. What are the frequency and wave of the radiation emitted in this transition?								
Q. 6.	(a)	Consider the elastic vibrations of a crystal with one atom in the primitive ce calculate the frequency of an elastic wave in terms of the wavevector that	ll and (12)							
	(b)	describes the wave and in terms of the elastic constants.	(0)	(20)						
	(b)	Describe vibrations of crystal.	(8)	(20)						
Q. 7.	(a)	Discuss density of states in Three Dimension	(8)							
	(b)	Describe Debye Model for Density of States	(8)							
	(c)	Define phonon heat capacity.	(4)	(20)						
Q. 8.	Writ	(a) Maxwell's Equations(b) Magnetic Materials: (Ferro-Dia-Para)	each)	(20)						
		(c) Black Body Radiation								